
A Method for Automated Detection of Usability Problems from Client User Interface Events
Gilan M. Saadawi MD, PhD1, Elizabeth Legowski2, Olga Medvedeva, MS2, Girish Chavan, MS2

and Rebecca S. Crowley MD, MS1,2,3

1 Center for Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh PA

2Centers for Oncology and Pathology Informatics, University of Pittsburgh School of Medicine, Pittsburgh PA
 3 Intelligent Systems Program, University of Pittsburgh, Pittsburgh PA

ABSTRACT

Think-aloud usability analysis provides extremely useful
data but is very time-consuming and expensive to perform
because of the extensive manual video analysis that is
required. We describe a simple method for automated
detection of usability problems from client user interface
events for a developing medical intelligent tutoring
system. The method incorporates (1) an agent-based
method for communication that funnels all interface
events and system responses to a centralized database, (2)
a simple schema for representing interface events and
higher order subgoals, and (3) an algorithm that
reproduces the criteria used for manual coding of
usability problems. A correction factor was empirically
determining to account for the slower task performance of
users when thinking aloud. We tested the validity of the
method by simultaneously identifying usability problems
using TAU and manually computing them from stored
interface event data using the proposed algorithm. All
usability problems that did not rely on verbal utterances
were detectable with the proposed method.

INTRODUCTION

Usability is the extent to which a system enables users, in
a given context of use, to achieve specified goals
effectively and efficiently. 1 Usability evaluation (UE) as
defined by Nielsen 2, consists of methodologies for
measuring usability attributes of a system user interface
(UI). Different approaches to usability evaluation have
been described, including empirical methods (such as
think-aloud usability testing) and analytic methods (such
as GOMS, Heuristic Evaluation, and Cognitive
Walkthrough) 3.

User-based evaluations using think-aloud protocol (TAU)
is generally considered to be the most valuable usability
method since it yields the highest number of relevant
usability problems 3. In TAU, real participants are studied
under laboratory or field conditions 2, 5. Typically these
studies involve (1) creation of a set of tasks, (2) video
capture of the user attempting to complete the tasks using
the system while they think aloud, and then (3) coding
and analysis of the resulting data – both video and think-
aloud using a metric for determining the existence of a

usability problem. Analysis of the collected empirical data
is considered the most resource demanding activity in a
usability study. Not only is it time consuming, but
evaluators may find themselves influencing the findings
through different interpretations 6.

In contrast, automated usability methods target analysis of
user interface events (UI events) that are generated as
natural products of the normal operation of user interface
systems. Because such events can be captured and
because they indicate user behavior with respect to an
application’s user interface, they have long been regarded
as a potentially fruitful source of information regarding
application usage and usability. Capture and analysis of
task times, percentage of task completion, error rates,
duration and frequency of help usage provide excellent
data for quantitatively characterizing on-line behavior and
performance attributes. They are most useful in
understanding user behavior and performance, comparing
design alternatives and computing usability metrics 4.

However, user interface events are typically extremely
voluminous and rich in detail. Consequently, one of the
most challenging problems is to capture, store and
retrieve data at a level of abstraction that is useful to
investigators interested in analyzing application usage or
evaluating usability 4.

Automation has been used predominantly in two ways
within usability testing: (1) automated capture of use data
and (2) automated analysis of these data according to
metrics 6. Automatic capture of UIE has several potential
advantages over traditional TAU. First, it avoids the cost
and time required to perform TAU sessions and coding of
the data. Second, it can provide real time data to
developers as new features are added. Third, it allows
incorporation of multiple evaluations within the UI
development phase 7.

In this manuscript we describe our existing system for
automated capture of interface events, and test a method
for automated usability analysis (AUA) based on classical
usability evaluation. The test-bed for this work is
SlideTutor – an Intelligent Tutoring System for visual
diagnosis.

AMIA 2005 Symposium Proceedings Page - 654

TEST-BED SYSTEM DESCRIPTION

SlideTutor 8 is a developing, web-deployed, Intelligent
Tutoring System (ITS) designed for use by medical
students and residents in Pathology and Dermatology.
SlideTutor uses a set of novel interface elements,
including a virtual microscope system and a reasoning
interface, in which each student builds an argument for a
particular microscopic diagnosis. The system is based on
the Cognitive Tutor paradigm, in which each student
action is evaluated by the tutoring system. Incorrect
actions match against production rules that detect
different types of errors-and provide context specific
remediation. Correct actions are allowed, and move the
students forward in the problem-solving environment.
Requests for help generate responses from the tutor based
on the next best step in the expert model.

In many respects, SlideTutor is an ideal system in which
to deploy an automated module for detecting usability
problems: (1) like other ITS, the highly interactive nature
of the system requires constant attention to the usability
of the UI, (2) the system changes frequently as new
interfaces are developed for particular experiments, (3)
TAU studies have become commonplace in our
laboratory but are time-consuming to analyze, and (4) the
client-server nature could be exploited to capture all
events from any client to a single database.

COMMUNICATIONS AND LOGGING DATABASE

Communication among all modules of the system is
agent-based, using the Agent Communication Language -
a message exchange interaction protocol standard number
developed by the Foundation for Intelligent Physical
Agents (FIPA)9. The message format can fit an unlimited

number of possible parameters. The corresponding
database representation is generic and could be applied to
virtually any interactive system. We use one database
system (implemented with Oracle 9i) for managing all
data generated during project experiments. The relational
design allows us to store information regarding
relationships among experiments, users, tutor cases, goals
to achieve in each case, student action events and tutor
response events. All events are time-stamped.

The events relevant to automated usability analysis
include three categories. Interface Events record low-level
human-computer interaction such as pressing a button or
selecting a menu item. Client Events capture
combinations of Interface Events that represent the most
atomic discrete subgoal, such as creating a hypothesis,
identifying a feature, or asking for a hint. Client Events
are answered by Tutor Responses. TutorResponse (TR)
indicate the response of the system to the last student

Figure 1. Interface Events, Client Events, and Tutor
Responses

CETYPE CELABEL CEACTION CETIMESTAMP IETYPE IELABEL IEACTION IETIMESTAMP

Finding blister Evidence 2005-04-13
16:25:37.024

Button finding Pressed 2005-04-13
16:25:22.44

Finding blister Evidence 2005-04-13
16:25:37.024

FINDINGTree FINDING Open 2005-04-13
16:25:23.912

Finding blister Evidence 2005-04-13
16:25:37.024

FINDINGTree [FEATURE, DERMAL
CHANGES]

TreeExpanded 2005-04-13
16:25:30.281

Finding blister Evidence 2005-04-13
16:25:37.024

FINDINGTree [FEATURE, DERMAL
CHANGES]

TreeSelected 2005-04-13
16:25:30.381

Finding blister Evidence 2005-04-13
16:25:37.024

FINDINGTree [FEATURE,
INTRAEPIDERMAL
CHANGES]

TreeExpanded 2005-04-13
16:25:34.177

Finding blister Evidence 2005-04-13
16:25:37.024

FINDINGTree [FEATURE,
INTRAEPIDERMAL
CHANGES]

TreeSelected 2005-04-13
16:25:34.237

Finding blister Evidence 2005-04-13
16:25:37.024

FINDINGTree [FEATURE,
INTRAEPIDERMAL
CHANGES, blister]

TreeSelected 2005-04-13
16:25:36.38

CETYPE CELABEL CEACTION CETIMESTAMP IETYPE IELABEL IEACTION IETIMESTAMP Table 1: One Client Event composed of multiple Interface Events (extract from protocol database).
AMIA 2005 Symposium Proceedings Page - 655

action including the type of error for incorrect actions and
the best next action at this point in the problem space. The
part of the schema related to these three events is shown
in Figure 1.

All Interface Events (IE) and Client Events (CE) can be
represented as a simple aggregate of type, label and
action. Interface Event types (IE_TYPE) indicates
interface element class (e.g. button, menu). Interface
Event Label (IE_LABEL) indicates the instance of the
element (e.g. finding button, file menu). Interface Event
Action (IE_ACTION) indicates the user action on the
element (e.g. press, release, select). A single IE_TYPE
can have multiple IE_LABEL and multiple IE_ACTION.
A Button could be a Feature-Button or a Hypothesis-
Button or a Hint-Button. And, the Feature-Button could
have IE_ACTION of Button-Pressed, Button-Next or
Button-Released.

Client Event represent tutor-respondable user actions,
reflecting a single small subgoal, such as asking for a hint,
creating a finding, or deleting a hypothesis. Client Event
types (CE_TYPE) indicate sub-goal class (e.g. finding,
hypothesis). Client Event Label (CE_LABEL) represents
the instance of the subgoal (e.g. finding of blister,
hypothesis of IgA Dermatosis), and Client Event Action
indicates the action aspect of the subgoal (e.g. assert
evidence, delete).

As an example, take the action of asserting a feature of
blister in SlideTutor. To correctly assert this feature the
student must: press the finding button, click on a region of
the virtual slide, expand and select through a hierarchical
tree of findings which opens in a pop-up window, and
select the appropriate finding describing the region which
was indicated in the image. Table 1 shows the single
Client Event (see uniform timestamp indicating that the
CE is complete only after the final IE) and it’s seven
related IE.

RESEARCH AIMS

The goal of this study was to develop and test a method
for automatically detecting usability problems that could
replace video analysis of think aloud protocols. The
intended first use is with pre-defined tasks identical to
those created for a TAU. Users will be brought into the
Usability Laboratory and asked to perform the tasks much
as they would for a TAU, but without thinking aloud.
Automated data analysis will produce a report of usability
problems based on these tasks without the need for video
coding. To accomplish this goal we:

1. developed a simple algorithm that reproduces almost

all of the video-coding criteria used in detecting
usability problems with TAU, which exploits our

generic method for representing interface events and
client events.

2. tested the AUA algorithm by comparing the usability
problems identified by traditional TAU and AUA in a
single set of users.

3. calculated a correction co-efficient to account for the
known slowing effect of thinking aloud and modified
the algorithm appropriately.

MATERIALS AND METHODS

Subjects: The study was approved by the University of
Pittsburgh Institutional Review Board (IRB Protocol
#020348). Subjects were medical students with no
previous experience using the SlideTutor system. Subjects
were solicited by email. They were divided into two
matched groups each consisting of 5 students:

Group I was trained to provide think aloud usability
protocols using standard methods 3. Briefly, subjects (1)
received a standard set of instructions for thinking out
loud, (2) listened as the researcher demonstrated thinking
aloud on a multicolumn addition problem, (3) listened as
the researcher demonstrated thinking aloud while
changing margins in MS Word to 1”, and (4) practiced
thinking aloud as they changed the paper orientation in
MS Word from Portrait to Landscape. Subjects who
demonstrated difficulty in producing protocol material of
sufficient quality or quantity were given feedback and
asked to try the practice again. Group II was asked to use
the system without think aloud instructions. Neither group
was trained to use the interface.

Data Collection: At the start of the session, subjects were
given a set of index cards, each with one printed task
description. There were a total of 6 tasks designed to
cover most of the functionality of the system including
repetitions to examine usability problems over time.
Subjects were instructed to complete each task in order.
Group I was prompted to return to think aloud if the
subject was silent for more than one minute. For group I,
digital audio was captured concurrently with video screen
capture using Camtasia Recorder v 3.0.2, and saved as
.avi files for coding and review.

System: For this study, we used the case-based (node and
arc) SlideTutor interface. A demonstration version is
accessible at http://slidetutor.upmc.edu/.

Coding of Usability Problems: We employed a widely
accepted metric for coding of usability problems in
TAU10. Each task was subdivided into component steps,
and then we applied standard criteria for establishing a
usability problem. These criteria are: (1) the task could
not be successfully completed (2) the amount of time to
complete any individual sub-goal exceeded 2 minutes (3)

AMIA 2005 Symposium Proceedings Page - 656

the user had to try three or more things to fulfill a specific
subgoal and (4) the user expressed negative affect such as
frustration or anger, or the user offered a suggestion for a
design change. Any subgoal that fulfills one or more
criteria above for any user is considered a usability
problem. During audio/video playback, we coded Group I
for all actions taken according to these criteria.

RESULTS

Algorithm

We were able to account for criteria 1-3 (but obviously
not #4) with our algorithm, shown below in pseudocode:

forall users
 forall tasks
 forall pre-defined subgoal (SG_TYPE , SG_LABEL)

IF there is no CE matching the subgoal (CE_TYPE =
SG_TYPE and CE_LABEL = SG_LABEL), OR

IF timestamp CE_IElast – timestamp CE_IEfirst > 2
minutes * κ (where CE_IElast and CE_IEfirst are
the last and first IE associated with a CE
matching the SG and κ is the correction
coefficient for non-verbalization conditions), OR

IF total number of CE_IE – expected SG_IE >3
 THEN a usability problem is present involving SG

Comparison of data from TAU and AUA in Group I to
validate the use of automated data

We identified 12 total usability problems using TAU in
Group I (Table 3). Our algorithm correctly identified all
10 usability problems fulfilling criteria 1-3, and therefore
missed 2 usability problems. Problems identified included
use of hint buttons, use of support links and refute links
when evidence or hypothesis nodes are overlapping,
describing feature qualities, using the glossary, and
traversing the Space-Tree based browser.

Think Aloud Usability Analysis (TAU) of Group I

Number of tasks fulfilling each of the manual coding criteria

 Failed to complete task 2

 Individual SG requiring > 2 minutes to complete 3
 Attempt to complete SG required attempting >3 different
 things 5

 Expression of negative affect or design suggestion 2

Total number of usability problems detected 12

Table 3: TAU results from Group I

Calculation of a correction coefficient (κ)

Think-aloud processes associated with recoding of
sensory stimuli into verbal processes have been called

Level 2 verbalization 11. TAU is an example of Level 2
verbalization because of the abundant visual stimuli
associated with using a computer interface. Level 2
verbalization has been shown to increase the time
required for task completion, without significantly
affecting task performance. Because we want to use AUA
without requiring users to think aloud – we needed to
determine the relative slowing effect of thinking aloud in
order to correct for it in our algorithm.

y = 0.3076x + 2.9143

0

20

40

60

80

100

120

0 50 100 150

Mean time for Group I (sec)

M
ea

n
tim

e
fo

r
G

ro
up

 II
 (

se
c)

Figure 2. Effect of thinking aloud on time to subgoal completion

Figure 2 shows the mean time to completion of each
subgoal for Group I versus Group 2. Each point represents
one of the 19 subgoals associated with the 6 tasks. The
slope of the line shows that students in the think-aloud
condition (Group I) took an average of nearly three times
as long to complete subgoals than those who did not think
aloud. (Group II). We use the value 0.3 as a correction co-
efficient to account for the faster performance times for
users who do not think-aloud. When. users are asked to
think-aloud, κ should be set to 1.

Use of the AUA Algorithm to identify usability problems
in the non-think-aloud group

Finally, we applied the AUA algorithm (with the addition
of the correction coefficient for non-verbalizing
conditions) to the IE and CE data generated automatically
and stored in the protocol database, and identified a total
of 10 usability problems in Group II. Many of these
problems overlapped with those identified in Group I.
Differences between Groups I and II reflect the distinct
composition of users in these two groups.

DISCUSSION

Usability evaluation techniques have proven to be
invaluable tools for assessing the quality of software.
However, these methods are often difficult, time

AMIA 2005 Symposium Proceedings Page - 657

consuming and expensive. Hence, in the last decade
usability research has focused on identifying the best
methods to apply, determining the minimal number of
subjects that must be tested, and providing tools for
conducting evaluation ‘at a discount’ 4,6. Video-based
evaluations as TAU tend to produce massive amounts of
data that can be expensive to analyze. The ratio of time
spent in analysis versus the duration of the sessions being
analyzed has been known to reach 10:1 12. Moreover,
video-based evaluations can make subjects self-conscious
and affect their performance 3. Usability specialists at
Microsoft, Apple and SunSoft all report the use of tools to
track UI events 4,13.

We have developed and tested a simple method for
capturing and storing massive amounts of interaction data
for our Intelligent Tutoring System. Interface events are
stored in relationship to higher order subgoals. The use of
the algorithm on logged data yielded the same usability
results as the traditional TAU. Although our system uses
the Agent Communication Language, the approach is
possible with any system (including web-based systems
or vendor systems) as long as they capture and provide
access to low – level interface events 14. Implementation
of the tracking mechanisms and schema required
additional effort and resources, but once these low-level
interface events are captured, analysis can be automated.
The method is flexible to changes in the UI and therefore
much more efficient in the long run than extracting
information from usage logs, especially when the UI is
expected to change frequently. The only significant
limitation that we encountered was that automated data
could not capture the affect of the user or verbalized
suggestions for changes. These could be manually added
by slightly modifying our interface so that an
experimenter could easily indicate such an event
interactively to the database.

FUTURE WORK

We are encouraged by our validation results and intend to
fully implement the algorithm, anticipating that it will
greatly simplify collection, analysis and reporting of
usability problems in our laboratory. Usability problems
identified through automated methods will be
automatically entered into our Bugzilla database, and
triaged to a developer for review.

Complete automation of this algorithm will require us to
store simple task templates that indicate the type and label
of subgoals against which CE and EI must match. Such
task metadata will be added to our project database to
accommodate this requirement.

Eventually, we are interested in extending these methods
for identifying or predicting usability problems from

client user interface events that do not require accrual of
subjects specifically for the purpose of usability testing.
Interface events that occur during natural usage would
provide an attractive alternative, because they measure
problems that occur with real usage under field
conditions.

ACKNOWLEDGEMENTS

This work was supported by a grant from the National
Library of Medicine (R01 LM007891-01). The authors
wish to thank Eugene Tseytlin for his help with the
project.

REFERENCES

1. Jokela T, Iivari N, Matero J, and Karukka J . The standard

of user-centered design and the standard definition of
usability: analyzing ISO 13407 against ISO 9241-11:
Proceedings of the Latin American conference on Human-
computer interaction, August 2003.

2. Nielsen, J. Usability Engineering. Boston: Academic
Press/AP Professional, Cambridge, MA. 1993a.

3. Nielsen J, Clemmensen T, Yssing C. Getting access to what
goes on in people's heads? reflections on the think-aloud
technique. Proceedings of the second Nordic conference on
Human-computer interaction, October 2002.

4. Hilbert D M, Redmiles D F. Extracting usability
information from user interface events ACM Computing
Surveys (CSUR), December 2000: Volume 32 Issue 4.

5. Shneiderman, B. Designing the User Interface. Reading,
MA: Addison-Wesley, 1987.

6. Kjeldskov J, Skov M. B., Stage J. Instant data analysis:
conducting usability evaluations in a day Proceedings of
the third Nordic conference on Human-computer
interaction, October 2004.

7. Ivory, M. Y., Hearst M. A. The state of the art in
automating usability evaluation of user interfaces ACM
Computing Surveys (CSUR), December 2001: Volume 33
Issue 4.

8. Crowley RS and Medvedeva OP. General Architecture for
Intelligent Tutoring of Diagnostic Classification Problem
Solving. Proc AMIA Symp, 2003: 185-189.

9. The Foundation for Intelligent Physical Agents. At
http://www.fipa.org/

10. John, B. E., & Mashyna, M. M. (1997) Evaluating a
Multimedia Authoring Tool with Cognitive Walkthrough
and Think-Aloud User Studies. Journal of the American
Society of Information Science, 48 (9) pp. 1004-1022.

11. Ericsson KA and Simon HA. Protocol Analysis: Verbal
Reports as Data. Revised Edition. MIT Press, Cambridge,
MA, 1999.

12. Weiler, P. Software for the usability lab: a sampling of
current tools. In Proceedings of INTERCHI’93, 1993.

13. Chang E. and Dillon, T. S. Automated usability testing. In
Proceedings of INTERACT ’97, 1997.

14. Medvedeva OP, Chavan G, Crowley RS. A data collection
framework for capturing ITS data based on an agent
communication standard. Workshop Proceedings of the
American Association for Artificial Intelligence, 2005.

AMIA 2005 Symposium Proceedings Page - 658

